Code	IV.2.
Course Title (English)	Electrical Design
Course Title (Polish)	Podstawy elektrotechniki i elektroniki
Credits	4 ECTS

Language of instruction English

Compulsory for Profile: Computer Modelling and Simulation (CMS), Intelligent Energy (IE), Biotechnology for

Environmental Protection (BI), Business and Technology (BT)

Type of studies BSc studies

Unit running the programme

Electrotechnics and Automatic Control Division at Institute of Environmental

Engineering

Course coordinator and

academic teacher

Zygmunt Piątek, professor

Form of classes and number of hours

Semester	Lec.	Tut.	Lab.	Proj.	Sem.	Credit points
IV	30	-	15			4

Learning outcomes The introduction to theory of circuits: DC currents, AC currents, Laplace transform

Pre requisites

Physical phenomena, solving systems of linear equations, complex numbers, theory of

complex function

(mathematical tools)

Course description LECTURE

1. Introduction and basic ideas

Charge, current and voltage

Energy and power

Current and voltage sources

Resistance Ohm's law

2. Kirchhoff's laws and series-parallel resistive circuits

Loops, branches and nodes

Kirchhoff's laws

Single-loop circuits

Series and parallel resistance

Voltage and current division

3. Dependent sources and operational amplifier

Dependent voltage and current sources Operational amplifier Virtual short circuit A/D converter

4. Node and loop analysis

Nodal analysis Loop analysis

5. Network theorems

Superposition
Source transformations
Thévenin's and Norton's theorems
The maximum power transfer theorem

6. Basic non-linear elements

Non-linear elements Ideal diode Simple circuits containing ideal diodes Zener diodes Static and dynamic resistance

7. Inductors and capacitors

The inductor
The capacitor
Series and parallel inductors
Series and parallel capacitors
Smoothing properties of a capacitor and a coil

8. Phasors

A brief review of complex numbers Phasor representatives of sinusoidal signals Kirchhoff's laws with phasors Phasor relationships for resistors, inductors and capacitors Phasor impedance and admittance

9. Sinusoidal steady-state analysis by phasor method

Steady-state circuit analysis using phasors The phasor diagram Resonance in series and parallel RLC Loop and nodal analysis

10. Sinusoidal steady-state power calculations

Instantaneous and average power

Root mean square

Apparent power and power factor

Reactive power

Complex power and conservation of power

Power factor improving

The maximum power transfer in sinusoidal steady-state

11. Balanced three-phase circuits

Three-phase circuits

Y and Δ connections

Types of three-phase connections

Analysis of balanced Y-Y circuit

Analysis of balanced Y-Δ circuit

Power

12. Transient states in first and second-order linear circuits

Mathematical preliminaries

Continuity of energy and its consequences

Transient state in series RL and RC linear circuit

Transient state in series RLC linear circuit

13. The Laplace transform

Definition of Laplace transform

Overview of Laplace transform analysis

Transforms of basic signals

Elementary properties of Laplace transform

14. The inverse Laplace transform

Inverse Laplace transform

Zeros and poles

Partial fraction expansion

Residuals

Typical transforms and their inverse transforms

15. Transient state analysis with Laplace transform

Equivalent circuits for coils and capacitors

Impedance and admittance

Transient state analysis

TUTORIALS AIM (15 hours): Circuit analysis (DC, AC, Laplace transform) according to the lecture programme.

LABORATORY (15 hours): 5 labs

Form of assessment Written assessment - 1 hour (5 problems)

Basic reference materials a) Lectures and hand notes.

- Raymond A. DeCarlo, Pen-Min Lin, Linear circuit analysis, Prentice Hall, Englewood Cliffs, New Jersey 1995.

Other reference materials

- Syed A. Nasar, 3000 solved problems in electrical circuits, Schaum's Solved Problems Series, McGraw-Hill, 1988.
- b) Charles Alexander, Matthew Sadiku, Fundamentals of electric circuits, McGraw-Hill, 2008.
- c) David McMahon, Circuit analysis demystified, McGraw-Hill, 2007.
- d) William H. Hayt, Jack Kemmerly, Steven M. Durbin, Engineering circuit analysis, McGraw-Hill, 2007.
- e) Mahmood Nahvi, Joseph A. Edminister, Schaum's outline of electric circuits, McGraw-Hill, 2002.

e-mail of the course coordinator and academic teachers	zygmunt.piatek@interia.pl	
Average student workload (teaching hours + individ.)	45 + 45 hrs	
Remarks:		
Updated on:	04.04.2012	